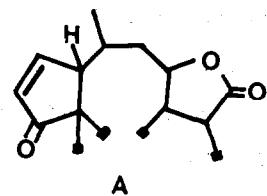


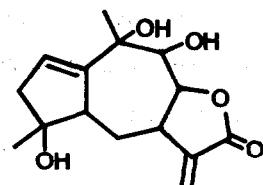
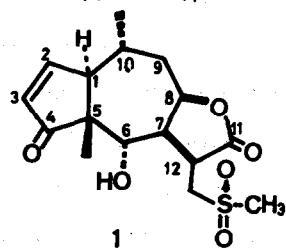
SULFERALIN, A NOVEL SULFONYL PSEUDOGUAIANOLIDE SESQUITERPENE
LACTONE FROM SENDAI *HELENIUM AUTUMNALE* L.

Yoshikazu Kondo*, Fumihiro Yoshizaki, Fumio Hamada, Jiro Imai, and Genjiro Kusano

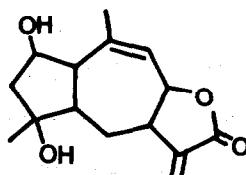
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

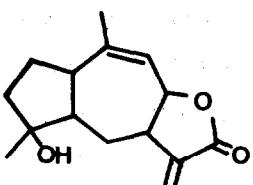

(Received in Japan 28 March 1977; received in UK for publication 16 May 1977)

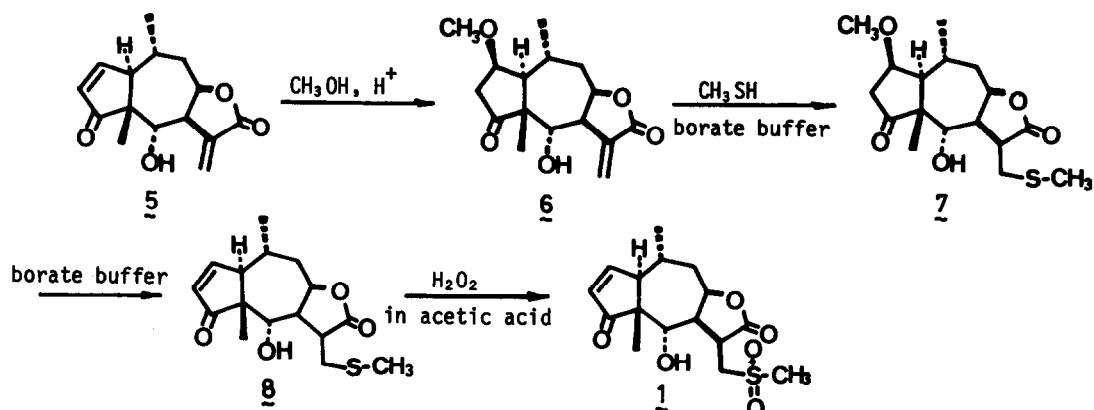
Several sesquiterpene lactones have recently gained attention as potential experimental tumor inhibitors¹. Our earlier reports^{2,3} described the isolation and structural elucidation of 2-methoxydihydrohelenalin and of picrohelenin, a cytotoxic and intensely bitter pseudo-guaianolide from Sendai *Helenium autumnale* L. (Compositae). In the course of the continuing studies on the constituents of Sendai *H. autumnale*, three new sesquiterpene lactones were isolated. One of these lactones was, to our knowledge, the first recognized naturally-occurring sulfonyl pseudoguaianolide. In this communication, we wish to describe the structural elucidation of the sulfur-containing pseudoguaianolide and two closely related guaianolides, which we named sulferalin 1, halshalin 2, and akhalin 3.



Sulferalin 1, mp 255-256°, $[\alpha]_D^{25} -167^\circ$ ($c=0.47$, pyridine), was isolated from the roots as colorless needles. The molecular formula $C_{16}H_{22}O_6S$ was assigned on the basis of the elemental analysis and high resolution mass spectrometry [Anal. Calcd. for $C_{16}H_{22}O_6S$: C, 56.16; H, 6.62; S, 9.36; M^+ , 342.1137. Found: C, 56.12; H, 6.47; S, 9.04, M^+ , 342.1118]. An absorption maximum at 226 nm (ϵ 6690) in the ultraviolet absorption (UV) spectrum and strong bands at 1765 and 1690 cm^{-1} in the infrared absorption (IR) spectrum revealed the presence of a γ -lactone group and an α, β -unsaturated cyclopentenone group. Additionally, the IR (3300 cm^{-1}) and mass (Calcd. for $M^+ - 18$, 324.1031. Found, 324.1022) spectra indicated the presence of a hydroxyl group.

The nuclear magnetic resonance (NMR) spectrum was remarkably instructive. A sharp singlet at 3.16 ppm was characteristic of the methyl sulfonyl group⁴ and another singlet (3H) at 1.34 ppm was attributed to the tertiary methyl group. A doublet (3H) at 1.16 ppm ($J=7$ Hz) was assigned to the secondary methyl group. A pair of two lowfield double doublets at 7.54 (1H, $J_1=6$ Hz, $J_2=2$ Hz) and 6.10 ppm (1H, $J_1=6$ Hz, $J_2=3$ Hz) which are the AM portions of an AMX system, were assigned to the β -and α -protons in an α, β -unsaturated cyclopentenone system⁵ bearing a hydrogen at the γ -position.


A singlet (1H) at 4.72 ppm was assigned to a carbonyl proton and a multiplet (1H) centered at 5.2 ppm was assigned to a lactonic proton. Irradiation of the multiplet centered at 1.7 ppm resulted in the collapse of the doublet methyl signal at 1.16 ppm to a singlet, the methine multiplet around 3.1 ppm to a broad singlet and the methylene multiplet around 2.2 ppm to a deformed multiplet. These observations provide a partial structure A, in addition of which a tertiary methyl group, a methyl sulfonyl group, and a secondary alcohol have been substantiated. The singlet attributed to a carbonyl proton was observed similarly in the NMR spectrum of helenalin 5. Since the α -methylene group attached to γ -lactone is known to be susceptible to the attack of the nucleophiles, such as alkoxy, sulphydryl^{6,7}, and amino groups^{7,8}, and the partial structure A and the other functional groups are common with those of 5, the addition of methanethiol on the α -methylene group in 5 followed by oxidation could explain the formation of sulferalin 1. Under such a working hypothesis, we demonstrated the synthesis of 1 from 5.


Since direct reaction of helenalin 5 with methanethiol provided a di-S-methyl derivative, 2-methoxydihydrohelenalin² 6, which was readily available from helenalin 5, was allowed to react with methanethiol for 3 hr in tetrahydrofuran containing borate buffer (pH 9.2) to afford the addition compound 7, $C_{17}H_{26}O_5S$, mp 165-167°. When the product 7 was maintained in borate buffer (pH 9.2) for 3 hr, the desired methylthioether 8, $C_{16}H_{22}O_4S$, mp 163-165°, was obtained in 36% yield. The spectral data of 7 and 8 were shown as follows; 7: IR (CS_2) cm^{-1} : 3440 (OH), 1740 (cyclopentanone), 1775 (γ -lactone). NMR ($CDCl_3$) ppm: 4.70 (1H, m, $C^8\text{-H}$), 4.32 (1H, br.s, $C^6\text{-H}$),


3

2

4

Scheme 1

3.25 (3H, s, $-\text{OCH}_3$), 2.21 (3H, s, $-\text{SCH}_3$), 1.12 (3H, d, $J=7$ Hz, $\text{C}^{10}-\text{CH}_3$), 1.00 (3H, s, C^5-CH_3).
 $\tilde{\gamma}$: IR (KBr) cm^{-1} : 3400 (OH), 1760 (γ -lactone), 1693 (cyclopentenone). NMR (CDCl_3) ppm: 7.72 (1H, dd, $J_1=6$ Hz, $J_2=2$ Hz, C^2-H), 6.16 (1H, dd, $J_1=6$ Hz, $J_3=3$ Hz, C^3-H), 5.12 (1H, m, C^8-H), 4.44 (1H, d, $J=6$ Hz, C^6-H), 2.20 (3H, s, $-\text{SCH}_3$), 1.28 (3H, d, $J=7$ Hz, $\text{C}^{10}-\text{CH}_3$), 1.37 (3H, s, C^5-CH_3).

Treatment of $\tilde{\gamma}$ with hydrogen peroxide in acetic acid provided the methyl sulfonyl compound in 65% yield, which was identical with natural sulferalin 1.

Halshalin $\tilde{2}$, mp 180-181°, $\text{C}_{15}\text{H}_{20}\text{O}_4$, $[\alpha]_D -66.2^\circ$ ($c=0.5$, methanol) was obtained from the epigeal parts as colorless needles. The IR spectrum showed bands at 3550, 3350 (OH), 1750 (γ -lactone), and 1665 cm^{-1} (conjugated double bond). The NMR spectrum of $\tilde{2}$ was remarkably similar to that of helenium lactone $\tilde{4}$ and an additional carbonyl proton signal was observed at 4.56 ppm. (Table I). The location of the hydroxyl group on the C^2 position was established by spin-decoupling experiments in which irradiation of the C^1 -methine proton signal at 3.20 ppm collapsed the carbonyl proton signal (C^2-H) at 4.56 ppm into a doublet ($J=7$ Hz). These spectral data allowed assignment as the structure $\tilde{2}$. Although the structure $\tilde{2}$, except the stereochemistry, has been proposed to a desacetylated product of gaillardin⁹, which has been isolated from *Gaillardia pulchella*, the physical properties of both halshalin $\tilde{2}$ and desacetylgaillardin, mp 149-151°, $[\alpha]_D -38^\circ$ were not identical.

Akihalin $\tilde{3}$, mp 209-211°, $\text{C}_{15}\text{H}_{20}\text{O}_5$, $[\alpha]_D +75.2^\circ$ ($c=0.4$, methanol) was obtained from the epigeal parts as colorless needles. $\tilde{3}$ can be regarded as a guianolide sesquiterpene lactone similar to halshalin $\tilde{2}$ by spectral inspection. The IR spectrum of $\tilde{3}$ showed hydroxyl bands at 3550, 3400, and 3250 cm^{-1} and the bands at 1760, 1750, and 1655 cm^{-1} attributable to an α -methylene- γ -lactone system. The NMR spectrum of $\tilde{3}$, as shown in Table I, allowed to assign the

guianolide ring system which was confirmed by extensive double resonance experiments. These properties led us to the structure 3 for akihalin. The stereochemistries of 2 and 3 are uncertain at the present time.

Table I. The NMR spectral data of halshalin 2, akihalin 3, and helenium lactone 4 (C_5D_5N).

	C ¹ -H	C ² -H	C ³ -H _a	C ³ -H _b	C ⁵ -H	C ⁶ -H	C ⁷ -H	C ⁸ -H	C ⁹ -H	C ¹³ -H _a	C ¹³ -H _b	C ⁴ -CH ₃	C ¹⁰ -CH ₃
2	3.20 (dd) J=7 J=12	4.56 (q) J=7					2.96 (m)	5.18	5.23	5.52 (d) J=3	6.26 (d) J=3.5	1.18 (s)	1.92 (s)
3		6.18 (d) J=2	2.44 (dd) J=16 J=1.5	2.82 (d) J=16	3.06 (d) J=12	1.96 (d) J=13	3.40 (m)	4.72 (dd) J=7 J=9	3.98 (d) J=9	5.86 (d) J=3	6.35 (d) J=2.5	1.40 (s)	1.62 (s)
4	3.10 (m)							5.28	5.30 (m)	5.47 (d) J=3	6.28 (d) J=3.8	1.26 (s)	1.62 (d) J<1

References and Notes

- 1 Reviews: E. Rodriguez, G. H. N. Towers, and J. C. Michell, *Phytochem.*, 15, 1573 (1976); D. Gross, *ibid.*, 14, 2105 (1975).
- 2 Y. Kondo, F. Hamada, and F. Yoshizaki, *Heterocycles*, 5, 373 (1976).
- 3 Y. Kondo, T. Tomimori, N. Hiraga, and T. Takemoto, *ibid.*, 6, 19 (1977).
- 4 G. Van Dyke Tiers, "Characteristic Nuclear Magnetic Resonance Shielding Values for Hydrogen in Organic Structures", 1958.
- 5 W. Herz, A. R. De Vivar, J. Romo, and N. Viswanathan, *J. Am. Chem. Soc.*, 85, 19 (1963).
- 6 R. W. Doskotch and F. S. El-Feraly, *J. Org. Chem.*, 35, 1928 (1970); S. M. Kupchan, M. A. Eakin, and A. M. Thomas, *J. Med. Chem.*, 14, 1147 (1971); W. Herz and I. Wahlberg, *J. Org. Chem.*, 38, 2485 (1973); A. Rosowsky, N. Papathanasopoulos, H. Lazarus, G. E. Foley and E. J. Modest, *J. Med. Chem.*, 17, 672 (1974); K. H. Lee, T. Kimura, M. Okamoto, and C. M. Cowherd, *Tetrahedron Letters*, 1051 (1976).
- 7 G. Dupuis, J. C. Mitchell, and G. H. N. Towers, *Can. J. Biochem.*, 52, 575 (1974).
- 8 K. H. Lee, S. H. Kim, H. Furukawa, C. Piantadosi, and E. S. Huang, *J. Med. Chem.*, 18, 59 (1975).
- 9 T. A. Dullforce, G. A. Sim, and D. N. J. White, *Tetrahedron Letters*, 973 (1969).